Gibbs Measures and Phase Transitions

Yaël Dillies, Kalle Kytölä, Kin Yau James Wong, following Hans-Otto Georgii June 30, 2025

Chapter 0

Prerequisites

0.1 Lebesgue conditional expectation

Let (X, \mathcal{X}) be a measurable space, let \mathcal{B} be a sub σ -algebra of \mathcal{X} .

Definition 0.1 (Lebesgue conditional expectation). The conditional expectation of a \mathcal{X} -measurable function $f: X \to [0, \infty]$ is

$$\mu[f|\mathcal{B}] = ??$$

Lemma 0.2 (Characterisation of the Lebesgue conditional expectation).

If $f: X \to [0, \infty]$ is a \mathcal{X} -measurable function, then $\mu[f|\mathcal{B}]$ is the μ -ae unique \mathcal{B} -measurable function $X \to [0, \infty]$ such that

$$\int_{B} \mu[f|\mathcal{B}] \ \partial \mu = \int_{B} f \ \partial \mu$$

for all $B \in \mathcal{B}$.

Proof. Standard machine.

Chapter 1 Specifications of random fields

1.1 Preliminaries

Definition 1.1 (Juxtaposition). Let E and S be sets. Let $\Delta \in \mathcal{P}(S)$, and let $\omega \in E^S$. We define

$$\operatorname{uxt}_{\omega}: E^{\Delta} \to E^{S} \tag{1.1}$$

$$\zeta \mapsto \delta \mapsto \begin{cases} \zeta_{\delta} & \delta \in \Delta \\ \omega_{\delta} & \delta \notin \Delta \end{cases}$$
(1.2)

to be the juxtaposition of ζ and ω (for each $\zeta \in E^{\Delta}$).

J

Definition 1.2 (Cylinder events). Let (E, \mathcal{E}) be a measurable space, and let S be a set. Then,

$$\mathcal{F}: \mathcal{P}(S) \to \{\text{sigma algebras on } E^S\}$$
(1.3)

$$\Delta \mapsto \sigma(\{\operatorname{proj}_{\delta} : E^S \to E \mid \delta \in \Delta\}) \tag{1.4}$$

defines the **cylinder events in** Δ (for each $\Delta \in \mathcal{P}(S)$), where each $\operatorname{proj}_{\delta}$ is the coordinate projection at coordinate δ .

Definition 1.3 (Kernel). Let (X, \mathcal{X}) and (Y, \mathcal{Y}) be measurable spaces. Then,

 $\operatorname{Ker}_{\mathcal{Y},\mathcal{X}} := \{ \pi : \mathcal{X} \times Y \to [0,\infty] \mid \forall y \in Y, \pi(\cdot \mid y) \in \mathfrak{M}(X,\mathcal{X}); \ \forall A \in \mathcal{X}, \pi(A \mid \cdot) \text{ is } \mathcal{Y}\text{-measurable} \}$ defines the set of **kernels from** \mathcal{Y} to \mathcal{X} , where $\mathfrak{M}(X,\mathcal{X})$ is the space of measures on X.

Definition 1.4 (Markov kernel).

Let (X, \mathcal{X}) and (Y, \mathcal{Y}) be measurable spaces. We say that $\pi \in \text{Ker}_{\mathcal{Y}, \mathcal{X}}$ is a **Markov kernel** iff $\pi(X \mid \cdot) = 1$.

Let (X, \mathcal{X}) be a measurable space, let \mathcal{B} be a sub σ -algebra of \mathcal{X} . Let $\pi \in \operatorname{Ker}_{\mathcal{B},\mathcal{X}}$.

Definition 1.5 (Proper kernel).

 π is **proper** iff $\pi(A \cap B \mid x) = \pi(A \mid x) \cdot \mathbf{1}_B(x)$ for all $A \in \mathcal{X}, B \in \mathcal{B}$ and $x \in X$.

Lemma 1.6 (Lebesgue integral characterisation of proper kernels).

If π is proper, then

$$\int f(x)g(x)\ \pi(dx\mid x_0) = g(x_0)\int f(x)\ \pi(dx\mid x_0)$$

for all $x_0 \in X$ and functions $f, g: X \to [0, \infty]$ such that f is \mathcal{X} -measurable, g is \mathcal{B} -measurable.

Proof. Standard machine.

Lemma 1.7 (Integral characterisation of proper kernels).

If π is a proper Markov kernel, then

$$\int f(x)g(x) \ \pi(dx \mid x_0) = g(x_0) \int f(x) \ \pi(dx \mid x_0)$$

for all $x_0 \in X$ and functions $f, g: X \to \mathbb{R}$ such that f is bounded \mathcal{X} -measurable and g is bounded \mathcal{B} -measurable.

Proof. Standard machine.

Definition 1.8 (Conditional expectation kernel).

Let $\mu \in \mathfrak{M}(X, \mathcal{X})$. Then, $\pi \in \operatorname{Ker}_{\mathcal{B}, \mathcal{X}}$ is a conditional expectation kernel for μ if $\mu(A \mid \mathcal{B}) = \pi(A \mid \cdot) \mu$ -a.e.

Lemma 1.9 (Lebesgue integral characterisation of proper conditional expectation kernels).

If $\pi \in \operatorname{Ker}_{\mathcal{B},\mathcal{X}}$ is a conditional expectation kernel for μ , then

$$\mu[f \mid \mathcal{B}] = \int f(x) \ \pi(\partial x \mid \cdot) \ \mu\text{-a.e.}$$

for all \mathcal{X} -measurable functions $f: X \to [0, \infty]$.

Proof.

Standard machine.

Lemma 1.10 (Integral characterisation of proper conditional expectation kernels). If $\pi \in \text{Ker}_{\mathcal{B},\mathcal{X}}$ is a conditional expectation kernel for μ , then

$$\mu(f \mid \mathcal{B}) = \int f(x) \ \pi(\partial x \mid \cdot) \ \mu\text{-a.e.}$$

for all bounded \mathcal{X} -measurable functions $f: X \to \mathbb{R}$.

Proof.

Standard machine.

Lemma 1.11 (Characterisation of proper conditional expectation kernels, Remark 1.20). Let $\mu \in \mathfrak{M}(X, \mathcal{X})$ be a finite measure and let $\pi \in \operatorname{Ker}_{\mathcal{B}, \mathcal{X}}$ be a proper kernel. Then,

 π is a conditional expectation kernel for $\mu \iff \mu \pi = \mu$

Proof.

By the characterisation of conditional expectation,

 $\pi \text{ is a conditional expectation kernel for } \mu \iff \forall A \in \mathcal{X}, \forall B \in \mathcal{B}, \mu(A \cap B) = \int_B \pi(A|\cdot) \ \partial \mu$

By properness of π ,

$$\int_B \pi(A|\cdot) \ \partial \mu = \mu \pi(A \cap B)$$

Hence

 π is a cond. exp. kernel with respect to $\mu \iff \forall A \in \mathcal{X}, \forall B \in \mathcal{B}, \mu(A \cap B) = \mu \pi(A \cap B)$ (1.5)

$$\iff \forall A \in \mathcal{X}, \mu(A) = \mu \pi(A) \tag{1.6}$$

$$\iff \mu = \mu \pi \tag{1.7}$$

1.2 Prescribing conditional probabilities

Definition 1.12 (Specification).

A specification is a family of kernels γ : Finset $S \to \text{Ker}_{\mathcal{F}_{S \setminus \Lambda}, \mathcal{E}^S}$ which is consistent, in the sense that

$$\forall \Lambda_1, \Lambda_2 \in \operatorname{Finset}(S), \Lambda_1 \subseteq \Lambda_2 \implies \gamma_{\Lambda_1} \circ_k \gamma_{\Lambda_2} = \gamma_{\Lambda_2}$$

All specifications will be with parameter set S and state space (E, \mathcal{E}) in this chapter.

Definition 1.13 (Independent specification).

A specification γ is **independent** iff

$$\forall \Lambda_1, \Lambda_2 \in \operatorname{Finset}(S), \gamma_{\Lambda_1} \circ_k \gamma_{\Lambda_2} = \gamma_{\Lambda_1 \cup \Lambda_2}$$

Definition 1.14 (Markov specification).

A specification γ is a **Markov specification** iff γ_{Λ} is a probability kernel for every $\Lambda \in \text{Finset}(S)$.

Definition 1.15 (Proper specification).

A specification γ is **proper** iff the kernel γ_{Λ} is proper for every $\Lambda \in \text{Finset}(S)$.

Definition 1.16 (Gibbs measures). Given a specification γ , a **Gibbs measures specified by** γ is a measure $\nu \in \mathfrak{M}(E^S, \mathcal{E}^S)$ such that $\gamma_{\Lambda}(A|\cdot)$ is a conditional expectation kernel for ν for all $A \in \mathcal{E}^S$ and $\Lambda \in \operatorname{Finset}(S)$.

Lemma 1.17 (Characterisation of Gibbs measures, Remark 1.24).

Let γ be a *proper* specification with parameter set S and state space (E, \mathcal{E}) , and let $\nu \in \mathfrak{P}(E^S, \mathcal{E}^S)$. TFAE:

1.
$$\nu \in \mathcal{G}(\gamma)$$
.

2. $\gamma_{\Lambda} \circ_m \nu = \nu$ for all $\Lambda \in \text{Finset}(S)$.

3. $\gamma_{\Lambda} \circ_m \nu = \nu$ frequently as $\Lambda \to S$.

Proof.

1 is equivalent to 2 by Lemma 1.9. 2 trivially implies 3. Now, 3 implies 2 because for each Λ there exists some $\Lambda' \supseteq \Lambda$ such that $\gamma_{\Lambda'} \circ_k \nu = \nu$. Then

$$\nu\gamma_{\Lambda} = \nu\gamma_{\Lambda'}\gamma_{\Lambda} = \nu\gamma_{\Lambda'} = \nu$$

1.3 λ -specifications

Let S be a set, (E, \mathcal{E}) be a measurable space and ν a measure on E.

Definition 1.18 (Product probability measure). Let I be a set. Suppose for each $i \in I$ that $(\Omega_i, \mathcal{B}_i, P_i)$ is a probability space. Then, $P := \bigotimes_{i \in I} P_i$ is a well-defined product probability measure on $\prod_{i \in I} \Omega_i$.

Definition 1.19 (Independent Specification with Single Spin Distribution (ISSSD)).

The Independent Specification with Single Spin Distribution ν is

$$\text{ISSSD}: \mathfrak{P}(E, \mathcal{E}) \to \text{Finset}(S) \to \mathcal{E}^S \times E^S \to \overline{\mathbb{R}_{\geq 0}}$$
(1.8)

 $\nu \mapsto \Lambda \mapsto (A \mid \omega) \mapsto \left(\nu^{\Lambda} \left(\operatorname{Juxt}_{\omega}^{-1}(A) \right) \right)$ (1.9)

defines the Independent Specification with Single Spin Distribution with ν (for each $\nu \in \mathfrak{P}(E, \mathcal{E}))$, where ν^{Λ} is the usual product measure.

Lemma 1.20 (Independence of ISSSDs). ISSSD(ν) is independent.	
Proof. Immediate.	
Definition 1.21 (ISSSDs are specifications). ISSSD(ν) is a specification.	
Lemma 1.22 (ISSSDs are proper specifications). ISSSD(ν) is a proper specification.	
<i>Proof.</i> We already know it's a specification. Properness is immediate.	
Lemma 1.23 (Uniqueness of a Gibbs measure specified by an ISSSD). There is at most one Gibbs measure specified by $ISSSD(\nu)$.	
Proof. See book.	
Lemma 1.24 (Existence of a Gibbs measure specified by an ISSSD). The product measure ν^{S} is a Gibbs measure specified by $\text{ISSSD}(\nu)$.	
Proof. Immediate.	
Definition 1.25 (Modifier). A modifier of γ is a family	
$\rho: \mathrm{Finset}(S) \to \Omega \to [0,\infty[$	
such that the corresponding family of kernels $\rho\gamma$ is a specification.	
Lemma 1.26 (Modifier of a modifier). Modifying a specification γ by ρ_1 then ρ_2 is the same as modifying it by their product.	
Proof. TODO	
Lemma 1.27 (A modifier of a proper specification is proper). If γ is a specification and ρ a modifier of γ , then $\rho\gamma$ is a proper specification.	
$D_{max} \circ f$	

Proof.

For all $\Lambda \in \text{Finset}(S), A \in \mathcal{E}^S, B \in \mathcal{F}_{S \setminus \Lambda}, \eta : S \to E$, we want to prove

$$(\rho\gamma)_\Lambda(A\cap B|\eta)=1_B(\eta)(\rho\gamma)_\Lambda(AB|\eta)$$

Expanding out, this is equivalent to

$$\int_{\zeta \in A \cap B} \rho_\Lambda(\zeta) \ d(\gamma_\Lambda(\eta)) = \mathbf{1}_B(\eta) \int_{\zeta \in A} \rho_\Lambda(\zeta) \ d(\gamma_\Lambda(\eta))$$

which is true by Lemma 1.6 with $f = 1_A \rho_\Lambda$, $g = 1_B$.

Lemma 1.28 (Every specification is a modification of some ISSSD, Remark 1.28.5).

If E is countable, ν is the counting measure and γ is any specification, then

$$\rho_\Lambda(\eta)=\gamma_\Lambda(\{\sigma_\Lambda=\eta_\Lambda\}|\eta)$$

is a modifier from $ISSSD(\nu)$ to γ .

Proof. For all $\Lambda \in \text{Finset}(S)$, A measurable, $\eta : S \to E$, we have

$$(\rho \operatorname{ISSSD}(\nu))_{\Lambda}(A|\eta) = \int_{\zeta} \rho_{\Lambda}(\zeta) \operatorname{ISSSD}(\nu)(d\zeta|\eta)$$
(1.10)

$$= \int_{\zeta} \gamma_{\Lambda}(\{\sigma_{\Lambda} = \eta_{\Lambda}\}|\eta) \operatorname{ISSSD}(\nu)(d\zeta|\eta)$$
(1.11)

$$=\gamma_{\Lambda}(A|\eta) \tag{1.12}$$

Proposition 1.29 (Characterisation of modifiers, Proposition 1.30.1).

If ρ is a family of measurable densities and γ is a proper specification, then TFAE

- 1. ρ is a modifier of γ
- 2. For all Λ_1,Λ_2 with $\Lambda_1\subseteq\Lambda_2$ and all $\eta:S\to E,$ we have

$$\begin{split} \rho_{\Lambda_2} &= \rho_{\Lambda_1} \cdot (\gamma_{\Lambda_1} \rho_{\Lambda_2}) \quad \gamma_{\Lambda_2}(\cdot | \eta) \text{-a.e.} \\ Proof. \qquad \bullet \ (\Longrightarrow) \ \rho_{\Lambda_2} &= \rho_{\Lambda_1} \cdot (\gamma_{\Lambda_1} \rho_{\Lambda_2}) \quad \gamma_{\Lambda_2}(\cdot | \eta) \text{-a.e.} \\ &- \implies \rho_{\Lambda_2} \gamma_{\Lambda_2} = \\ \Box \end{split}$$

Proposition 1.30 (Characterisation of modifiers of independent specifications, Proposition 1.30.2).

If ρ is a family of measurable densities and γ is a proper independent specification, then TFAE

- 1. ρ is a modifier of γ
- 2. For all Λ_1, Λ_2 with $\Lambda_1 \subseteq \Lambda_2, \eta: S \to E$ and $\gamma_{\Lambda_2 \setminus \Lambda_1}(\cdot | \alpha)$ -almost all $\eta_2: S \to E$, we have

$$\rho_{\Lambda_2}(\zeta_1)\rho_{\Lambda_1}(\zeta_2)=\rho_{\Lambda_2}(\zeta_2)\rho_{\Lambda_1}(\zeta_1)$$

for $\gamma_{\Lambda_1}(\cdot|\eta_2) \times \gamma_{\Lambda_2}(\cdot|\eta_2)$ -almost all (ζ_1, ζ_2) .

Proof.

Definition 1.31 (Premodifier, Definition 1.31). A family of measurable functions $h_{\Lambda} : (S \to E) \to [0, \infty[$ is a **premodifier** if

$$h_{\Lambda_2}(\zeta)h_{\Lambda_1}(\eta) = h_{\Lambda_1}(\zeta)h_{\Lambda_2}(\eta)$$

for all $\Lambda_1 \subseteq \Lambda_2$ and all $\zeta, \eta: S \to E$ such that $\zeta_{\Lambda_1^c} = \eta_{\Lambda_1^c}$.

Lemma 1.32 (Modifiers are premodifiers). If ρ is a modifier of $\text{ISSSD}(\nu^S)$, then it is a premodifier if any of the following conditions hold:

- 1. E is countable and ν is equivalent to the counting measure.
- 2. E is a second countable Borel space.
- 3. ν is everywhere dense.
- 4. For all $\Lambda_1 \subseteq \Lambda_2$ and all $\eta: S \to E, \, \zeta \mapsto \rho_{\Lambda_1}(\zeta \eta_{\Lambda_1^c})$ is continuous on E^{Λ_1} .

Proof.

- 1. Use Proposition ??.
- 2. Omitted.
- 3. Omitted.
- 4. Omitted.

Lemma 1.33 (Premodifiers give rise to modifiers, Remark 1.32). If h is a premodifier and ν is such that $0 < \nu_{\Lambda} h_{\Lambda} < \infty$ for all Λ , then

$$\rho_{\Lambda} := \frac{h_{\Lambda}}{\mathrm{ISSSD}(\nu)_{\Lambda} h_{\Lambda}}$$

is a modifier of $ISSSD(\nu)$.

Proof. TODO

Chapter 2 Gibbsian specifications

2.1 Potentials