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Chapter 0

Prerequisites

0.1 Lebesgue conditional expectation
Let (𝑋,𝒳) be a measurable space, let ℬ be a sub 𝜎-algebra of 𝒳.

Definition 0.1 (Lebesgue conditional expectation). The conditional expectation of a 𝒳-
measurable function 𝑓 ∶ 𝑋 → [0,∞] is

𝜇[𝑓|ℬ] = ??

Lemma 0.2 (Characterisation of the Lebesgue conditional expectation).
If 𝑓 ∶ 𝑋 → [0,∞] is a 𝒳-measurable function, then 𝜇[𝑓|ℬ] is the 𝜇-ae unique ℬ-measurable

function 𝑋 → [0,∞] such that
∫
𝐵
𝜇[𝑓|ℬ] 𝜕𝜇 = ∫

𝐵
𝑓 𝜕𝜇

for all 𝐵 ∈ ℬ.

Proof. Standard machine.
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Chapter 1

Specifications of random fields

1.1 Preliminaries
Definition 1.1 (Juxtaposition). Let 𝐸 and 𝑆 be sets. Let Δ ∈ 𝒫(𝑆), and let 𝜔 ∈ 𝐸𝑆. We define

Juxt𝜔 ∶ 𝐸Δ → 𝐸𝑆 (1.1)

𝜁 ↦ 𝛿 ↦ {𝜁𝛿 𝛿 ∈ Δ
𝜔𝛿 𝛿 ∉ Δ (1.2)

to be the juxtaposition of 𝜁 and 𝜔 (for each 𝜁 ∈ 𝐸Δ).
Definition 1.2 (Cylinder events). Let (𝐸, ℰ) be a measurable space, and let 𝑆 be a set. Then,

ℱ ∶ 𝒫(𝑆) → {sigma algebras on 𝐸𝑆} (1.3)
Δ ↦ 𝜎({proj𝛿 ∶ 𝐸𝑆 → 𝐸 ∣ 𝛿 ∈ Δ}) (1.4)

defines the cylinder events in Δ (for each Δ ∈ 𝒫(𝑆)), where each proj𝛿 is the coordinate
projection at coordinate 𝛿.
Definition 1.3 (Kernel). Let (𝑋,𝒳) and (𝑌 , 𝒴) be measurable spaces. Then,

Ker𝒴,𝒳 ∶= {𝜋 ∶ 𝒳 × 𝑌 → [0,∞] | ∀𝑦 ∈ 𝑌 , 𝜋(⋅ ∣ 𝑦) ∈ 𝔐(𝑋,𝒳); ∀𝐴 ∈ 𝒳, 𝜋(𝐴 ∣ ⋅) is 𝒴-measurable}
defines the set of kernels from 𝒴 to 𝒳, where 𝔐(𝑋,𝒳) is the space of measures on 𝑋.
Definition 1.4 (Markov kernel).

Let (𝑋,𝒳) and (𝑌 , 𝒴) be measurable spaces. We say that 𝜋 ∈ Ker𝒴,𝒳 is a Markov kernel
iff 𝜋(𝑋 ∣ ⋅) = 1.

Let (𝑋,𝒳) be a measurable space, let ℬ be a sub 𝜎-algebra of 𝒳. Let 𝜋 ∈ Kerℬ,𝒳.
Definition 1.5 (Proper kernel).

𝜋 is proper iff 𝜋(𝐴 ∩ 𝐵 ∣ 𝑥) = 𝜋(𝐴 ∣ 𝑥) ⋅ 1𝐵(𝑥) for all 𝐴 ∈ 𝒳, 𝐵 ∈ ℬ and 𝑥 ∈ 𝑋.
Lemma 1.6 (Lebesgue integral characterisation of proper kernels).

If 𝜋 is proper, then

∫𝑓(𝑥)𝑔(𝑥) 𝜋(𝑑𝑥 ∣ 𝑥0) = 𝑔(𝑥0)∫𝑓(𝑥) 𝜋(𝑑𝑥 ∣ 𝑥0)

for all 𝑥0 ∈ 𝑋 and functions 𝑓, 𝑔 ∶ 𝑋 → [0,∞] such that 𝑓 is 𝒳-measurable, 𝑔 is ℬ-measurable.
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Proof. Standard machine.

Lemma 1.7 (Integral characterisation of proper kernels).
If 𝜋 is a proper Markov kernel, then

∫𝑓(𝑥)𝑔(𝑥) 𝜋(𝑑𝑥 ∣ 𝑥0) = 𝑔(𝑥0)∫𝑓(𝑥) 𝜋(𝑑𝑥 ∣ 𝑥0)

for all 𝑥0 ∈ 𝑋 and functions 𝑓, 𝑔 ∶ 𝑋 → ℝ such that 𝑓 is bounded 𝒳-measurable and 𝑔 is bounded
ℬ-measurable.
Proof. Standard machine.

Definition 1.8 (Conditional expectation kernel).
Let 𝜇 ∈ 𝔐(𝑋,𝒳). Then, 𝜋 ∈ Kerℬ,𝒳 is a conditional expectation kernel for 𝜇 if

𝜇(𝐴 ∣ ℬ) = 𝜋(𝐴 ∣ ⋅) 𝜇-a.e.
Lemma 1.9 (Lebesgue integral characterisation of proper conditional expectation kernels).

If 𝜋 ∈ Kerℬ,𝒳 is a conditional expectation kernel for 𝜇, then

𝜇[𝑓 ∣ ℬ] = ∫𝑓(𝑥) 𝜋(𝜕𝑥 ∣ ⋅) 𝜇-a.e.

for all 𝒳-measurable functions 𝑓 ∶ 𝑋 → [0,∞].
Proof.

Standard machine.

Lemma 1.10 (Integral characterisation of proper conditional expectation kernels).
If 𝜋 ∈ Kerℬ,𝒳 is a conditional expectation kernel for 𝜇, then

𝜇(𝑓 ∣ ℬ) = ∫𝑓(𝑥) 𝜋(𝜕𝑥 ∣ ⋅) 𝜇-a.e.

for all bounded 𝒳-measurable functions 𝑓 ∶ 𝑋 → ℝ.
Proof.

Standard machine.

Lemma 1.11 (Characterisation of proper conditional expectation kernels, Remark 1.20).
Let 𝜇 ∈ 𝔐(𝑋,𝒳) be a finite measure and let 𝜋 ∈ Kerℬ,𝒳 be a proper kernel. Then,

𝜋 is a conditional expectation kernel for 𝜇 ⟺ 𝜇𝜋 = 𝜇
Proof.

By the characterisation of conditional expectation,

𝜋 is a conditional expectation kernel for 𝜇 ⟺ ∀𝐴 ∈ 𝒳,∀𝐵 ∈ ℬ, 𝜇(𝐴 ∩ 𝐵) = ∫
𝐵
𝜋(𝐴|⋅) 𝜕𝜇

By properness of 𝜋,
∫
𝐵
𝜋(𝐴|⋅) 𝜕𝜇 = 𝜇𝜋(𝐴 ∩ 𝐵)

Hence
𝜋 is a cond. exp. kernel with respect to 𝜇 ⟺ ∀𝐴 ∈ 𝒳,∀𝐵 ∈ ℬ, 𝜇(𝐴 ∩ 𝐵) = 𝜇𝜋(𝐴 ∩ 𝐵) (1.5)

⟺ ∀𝐴 ∈ 𝒳,𝜇(𝐴) = 𝜇𝜋(𝐴) (1.6)
⟺ 𝜇 = 𝜇𝜋 (1.7)
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1.2 Prescribing conditional probabilities
Definition 1.12 (Specification).

A specification is a family of kernels 𝛾 ∶ Finset𝑆 → Kerℱ𝑆∖Λ,ℰ𝑆 which is consistent, in the
sense that

∀Λ1, Λ2 ∈ Finset(𝑆), Λ1 ⊆ Λ2 ⟹ 𝛾Λ1
∘𝑘 𝛾Λ2

= 𝛾Λ2

All specifications will be with parameter set 𝑆 and state space (𝐸, ℰ) in this chapter.

Definition 1.13 (Independent specification).
A specification 𝛾 is independent iff

∀Λ1, Λ2 ∈ Finset(𝑆), 𝛾Λ1
∘𝑘 𝛾Λ2

= 𝛾Λ1∪Λ2

Definition 1.14 (Markov specification).
A specification 𝛾 is a Markov specification iff 𝛾Λ is a probability kernel for every Λ ∈

Finset(𝑆).
Definition 1.15 (Proper specification).

A specification 𝛾 is proper iff the kernel 𝛾Λ is proper for every Λ ∈ Finset(𝑆).
Definition 1.16 (Gibbs measures). Given a specification 𝛾, a Gibbs measures specified by
𝛾 is a measure 𝜈 ∈ 𝔐(𝐸𝑆, ℰ𝑆) such that 𝛾Λ(𝐴|⋅) is a conditional expectation kernel for 𝜈 for all
𝐴 ∈ ℰ𝑆 and Λ ∈ Finset(𝑆).
Lemma 1.17 (Characterisation of Gibbs measures, Remark 1.24).

Let 𝛾 be a proper specification with parameter set 𝑆 and state space (𝐸, ℰ), and let 𝜈 ∈
𝔓(𝐸𝑆, ℰ𝑆). TFAE:

1. 𝜈 ∈ 𝒢(𝛾).
2. 𝛾Λ ∘𝑚 𝜈 = 𝜈 for all Λ ∈ Finset(𝑆).
3. 𝛾Λ ∘𝑚 𝜈 = 𝜈 frequently as Λ → 𝑆.

Proof.
1 is equivalent to 2 by Lemma 1.9. 2 trivially implies 3. Now, 3 implies 2 because for each Λ

there exists some Λ′ ⊇ Λ such that 𝛾Λ′ ∘𝑘 𝜈 = 𝜈. Then

𝜈𝛾Λ = 𝜈𝛾Λ′𝛾Λ = 𝜈𝛾Λ′ = 𝜈

1.3 𝜆-specifications
Let 𝑆 be a set, (𝐸, ℰ) be a measurable space and 𝜈 a measure on 𝐸.

Definition 1.18 (Product probability measure). Let 𝐼 be a set. Suppose for each 𝑖 ∈ 𝐼 that
(Ω𝑖, ℬ𝑖, 𝑃𝑖) is a probability space. Then, 𝑃 ∶= ⨂𝑖∈𝐼 𝑃𝑖 is a well-defined product probability
measure on ∏𝑖∈𝐼 Ω𝑖.
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Definition 1.19 (Independent Specification with Single Spin Distribution (ISSSD)).
The Independent Specification with Single Spin Distribution 𝜈 is

ISSSD ∶ 𝔓(𝐸, ℰ) → Finset(𝑆) → ℰ𝑆 ×𝐸𝑆 → ℝ≥0 (1.8)
𝜈 ↦ Λ ↦ (𝐴 ∣ 𝜔) ↦ (𝜈Λ (Juxt−1

𝜔 (𝐴))) (1.9)

defines the Independent Specification with Single Spin Distribution with 𝜈 (for each
𝜈 ∈ 𝔓(𝐸, ℰ)), where 𝜈Λ is the usual product measure.
Lemma 1.20 (Independence of ISSSDs).

ISSSD(𝜈) is independent.
Proof. Immediate.

Definition 1.21 (ISSSDs are specifications).
ISSSD(𝜈) is a specification.

Lemma 1.22 (ISSSDs are proper specifications).
ISSSD(𝜈) is a proper specification.

Proof.
We already know it’s a specification. Properness is immediate.

Lemma 1.23 (Uniqueness of a Gibbs measure specified by an ISSSD).
There is at most one Gibbs measure specified by ISSSD(𝜈).

Proof.
See book.

Lemma 1.24 (Existence of a Gibbs measure specified by an ISSSD).
The product measure 𝜈𝑆 is a Gibbs measure specified by ISSSD(𝜈).

Proof. Immediate.

Definition 1.25 (Modifier).
A modifier of 𝛾 is a family

𝜌 ∶ Finset(𝑆) → Ω → [0,∞[
such that the corresponding family of kernels 𝜌𝛾 is a specification.
Lemma 1.26 (Modifier of a modifier).

Modifying a specification 𝛾 by 𝜌1 then 𝜌2 is the same as modifying it by their product.
Proof. TODO

Lemma 1.27 (A modifier of a proper specification is proper).
If 𝛾 is a specification and 𝜌 a modifier of 𝛾, then 𝜌𝛾 is a proper specification.

Proof.
For all Λ ∈ Finset(𝑆), 𝐴 ∈ ℰ𝑆, 𝐵 ∈ ℱ𝑆∖Λ, 𝜂 ∶ 𝑆 → 𝐸, we want to prove

(𝜌𝛾)Λ(𝐴 ∩ 𝐵|𝜂) = 1𝐵(𝜂)(𝜌𝛾)Λ(𝐴𝐵|𝜂)
Expanding out, this is equivalent to

∫
𝜁∈𝐴∩𝐵

𝜌Λ(𝜁) 𝑑(𝛾Λ(𝜂)) = 1𝐵(𝜂)∫
𝜁∈𝐴

𝜌Λ(𝜁) 𝑑(𝛾Λ(𝜂))

which is true by Lemma 1.6 with 𝑓 = 1𝐴𝜌Λ, 𝑔 = 1𝐵.
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Lemma 1.28 (Every specification is a modification of some ISSSD, Remark 1.28.5).
If 𝐸 is countable, 𝜈 is the counting measure and 𝛾 is any specification, then

𝜌Λ(𝜂) = 𝛾Λ({𝜎Λ = 𝜂Λ}|𝜂)

is a modifier from ISSSD(𝜈) to 𝛾.

Proof. For all Λ ∈ Finset(𝑆), 𝐴 measurable, 𝜂 ∶ 𝑆 → 𝐸, we have

(𝜌 ISSSD(𝜈))Λ(𝐴|𝜂) = ∫
𝜁
𝜌Λ(𝜁) ISSSD(𝜈)(𝑑𝜁|𝜂) (1.10)

= ∫
𝜁
𝛾Λ({𝜎Λ = 𝜂Λ}|𝜂) ISSSD(𝜈)(𝑑𝜁|𝜂) (1.11)

= 𝛾Λ(𝐴|𝜂) (1.12)

Proposition 1.29 (Characterisation of modifiers, Proposition 1.30.1).
If 𝜌 is a family of measurable densities and 𝛾 is a proper specification, then TFAE

1. 𝜌 is a modifier of 𝛾
2. For all Λ1, Λ2 with Λ1 ⊆ Λ2 and all 𝜂 ∶ 𝑆 → 𝐸, we have

𝜌Λ2
= 𝜌Λ1

⋅ (𝛾Λ1
𝜌Λ2

) 𝛾Λ2
(⋅|𝜂)-a.e.

Proof. • ( ⟹ ) 𝜌Λ2
= 𝜌Λ1

⋅ (𝛾Λ1
𝜌Λ2

) 𝛾Λ2
(⋅|𝜂)-a.e.

– ⟹ 𝜌Λ2
𝛾Λ2

=

Proposition 1.30 (Characterisation of modifiers of independent specifications, Proposition
1.30.2).

If 𝜌 is a family of measurable densities and 𝛾 is a proper independent specification, then
TFAE

1. 𝜌 is a modifier of 𝛾
2. For all Λ1, Λ2 with Λ1 ⊆ Λ2, 𝜂 ∶ 𝑆 → 𝐸 and 𝛾Λ2∖Λ1

(⋅|𝛼)-almost all 𝜂2 ∶ 𝑆 → 𝐸, we have

𝜌Λ2
(𝜁1)𝜌Λ1

(𝜁2) = 𝜌Λ2
(𝜁2)𝜌Λ1

(𝜁1)

for 𝛾Λ1
(⋅|𝜂2) × 𝛾Λ2

(⋅|𝜂2)-almost all (𝜁1, 𝜁2).
Proof.

Definition 1.31 (Premodifier, Definition 1.31). A family of measurable functions ℎΛ ∶ (𝑆 →
𝐸) → [0,∞[ is a premodifier if

ℎΛ2
(𝜁)ℎΛ1

(𝜂) = ℎΛ1
(𝜁)ℎΛ2

(𝜂)

for all Λ1 ⊆ Λ2 and all 𝜁, 𝜂 ∶ 𝑆 → 𝐸 such that 𝜁Λ𝑐
1
= 𝜂Λ𝑐

1
.
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Lemma 1.32 (Modifiers are premodifiers). If 𝜌 is a modifier of ISSSD(𝜈𝑆), then it is a premod-
ifier if any of the following conditions hold:

1. 𝐸 is countable and 𝜈 is equivalent to the counting measure.

2. 𝐸 is a second countable Borel space.

3. 𝜈 is everywhere dense.

4. For all Λ1 ⊆ Λ2 and all 𝜂 ∶ 𝑆 → 𝐸, 𝜁 ↦ 𝜌Λ1
(𝜁𝜂Λ𝑐

1
) is continuous on 𝐸Λ1 .

Proof.

1. Use Proposition ??.

2. Omitted.

3. Omitted.

4. Omitted.

Lemma 1.33 (Premodifiers give rise to modifiers, Remark 1.32). If ℎ is a premodifier and 𝜈 is
such that 0 < 𝜈ΛℎΛ < ∞ for all Λ, then

𝜌Λ ∶= ℎΛ
ISSSD(𝜈)ΛℎΛ

is a modifier of ISSSD(𝜈).
Proof.

TODO
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Chapter 2

Gibbsian specifications

2.1 Potentials
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