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Chapter 0

Prerequisites

0.1 Lebesgue conditional expectation

Let (X, X) be a measurable space, let B be a sub o-algebra of X

Definition 0.1 (Lebesgue conditional expectation). The conditional expectation of a X-
measurable function f: X — [0, 00] is

ulf|B) =27

Lemma 0.2 (Characterisation of the Lebesgue conditional expectation).
If f: X — [0,00] is a X-measurable function, then p[f|B] is the u-ae unique B-measurable

function X — [0, oo] such that
/u[f\B] 8u=/f8u
B B

for all B € B.

Proof. Standard machine. O



Chapter 1

Specifications of random fields

1.1 Preliminaries

Definition 1.1 (Juxtaposition). Let E and S be sets. Let A € P(S), and let w € E°. We define
Juxt,, : B — ES (1.1)

(s 0€A
§|—>§|—>{w(s 5 A (1.2)

to be the juxtaposition of ¢ and w (for each ( € E2).
Definition 1.2 (Cylinder events). Let (E, &) be a measurable space, and let .S be a set. Then,
F : P(S) — {sigma algebras on E°} (1.3)
A o({proj;: ES - E |6 € A}) (1.4)

defines the cylinder events in A (for each A € P(S)), where each proj, is the coordinate
projection at coordinate 9.

Definition 1.3 (Kernel). Let (X, ) and (Y,¥) be measurable spaces. Then,
Kery o :={m: X' xY = [0,00] | Vy € Y, 7(- | y) € M(X,X); VA€ X, 7(A] ) is Y-measurable}
defines the set of kernels from ¥ to X, where MM(X,X) is the space of measures on X.

Definition 1.4 (Markov kernel).
Let (X,X) and (Y, Y) be measurable spaces. We say that 7 € Kery 4 is a Markov kernel
ifr(X|)=1

Let (X, X)) be a measurable space, let B be a sub o-algebra of X'. Let 7 € Kerg .

Definition 1.5 (Proper kernel).
7 is proper if T(ANB|x)=n(A|z) - 1g(z)forall Ac X, Be B and x € X.

Lemma 1.6 (Lebesgue integral characterisation of proper kernels).

If 7 is proper, then
/f m(dx | z) —gxo/f m(dx | z)

for all 2, € X and functions f,g: X — [0, 00] such that f is X-measurable, g is B-measurable.



Proof. Standard machine. O

Lemma 1.7 (Integral characterisation of proper kernels).
If 7 is a proper Markov kernel, then

/f m(dx | 20) *gﬂfo/f m(dx | o)

for all z, € X and functions f, g : X — R such that f is bounded X'-measurable and g is bounded
B-measurable.

Proof. Standard machine. O

Definition 1.8 (Conditional expectation kernel).
Let p € M(X,X). Then, 7 € Kery  is a conditional expectation kernel for p if
WA | B) = n(A] ) pae.

Lemma 1.9 (Lebesgue integral characterisation of proper conditional expectation kernels).
If 7 € Kerg o is a conditional expectation kernel for y, then

ulf | B] = /f w(0x | -) p-a.e.

for all X'-measurable functions f: X — [0, o0].

Proof.
Standard machine. O

Lemma 1.10 (Integral characterisation of proper conditional expectation kernels).
If 7 € Kerg 4 is a conditional expectation kernel for y, then

u(f | B) /f w(0zx | -) p-ae.

for all bounded X'-measurable functions f: X — R.

Proof.
Standard machine. O

Lemma 1.11 (Characterisation of proper conditional expectation kernels, Remark 1.20).
Let p € M(X,X) be a finite measure and let m € Kerg o be a proper kernel. Then,

m is a conditional expectation kernel for p <= pur =p

Proof.
By the characterisation of conditional expectation,

7 is a conditional expectation kernel for 4 < VA€ X, VB € B, u(ANB) = /ﬂ'(A|) 0
B

By properness of 7,

/B 7(Al") O = pm(A N B)

Hence
7 is a cond. exp. kernel with respect to p <= VA€ X, VB € B,u(ANB)=ur(ANB) (1.5)
= VAe X, u(A) = pr(A) (1.6)
= pu=pum (1.7)



1.2 Prescribing conditional probabilities

Definition 1.12 (Specification).
A specification is a family of kernels «y : Finset S — Kerjsw ¢s which is consistent, in the

sense that
VA, Ay € Finset(S),A; C Ay = Yx, %7, =N

2

All specifications will be with parameter set S and state space (E, ) in this chapter.

Definition 1.13 (Independent specification).
A specification v is independent iff

VA, Ay € Finset(S), v, ok Ya, = Va,ua,

Definition 1.14 (Markov specification).
A specification v is a Markov specification iff v, is a probability kernel for every A €
Finset(S5).

Definition 1.15 (Proper specification).
A specification v is proper iff the kernel v, is proper for every A € Finset(S).

Definition 1.16 (Gibbs measures). Given a specification v, a Gibbs measures specified by
7 is a measure v € M(ES, £%) such that v, (A[) is a conditional expectation kernel for v for all
A € &9 and A € Finset(S).

Lemma 1.17 (Characterisation of Gibbs measures, Remark 1.24).
Let v be a proper specification with parameter set S and state space (E, &), and let v €
P(E®, E5). TFAE:

1. v e G(v).
2. Y5 o, v = v for all A € Finset(S).
3. Ya o, v = v frequently as A — S.

Proof.
1 is equivalent to 2 by Lemma 1.9. 2 trivially implies 3. Now, 3 implies 2 because for each A
there exists some A’ D A such that ~y,/, o, ¥ = v. Then

VYN =VINTA =V =V

1.3 J\-specifications

Let S be a set, (E, &) be a measurable space and v a measure on E.

Definition 1.18 (Product probability measure). Let I be a set. Suppose for each ¢ € I that
(Q2;,B;, P;) is a probability space. Then, P := ),_; P; is a well-defined product probability

K2
measure on [[,_, ©,.



Definition 1.19 (Independent Specification with Single Spin Distribution (ISSSD)).
The Independent Specification with Single Spin Distribution v is

ISSSD : P(E, &) — Finset(S) — &5 x BS — Ry (1.8)

vir A (A w) b (VA (Juxt ' (4))) (1.9)

defines the Independent Specification with Single Spin Distribution with v (for each
v € B(E,E)), where v* is the usual product measure.

Lemma 1.20 (Independence of ISSSDs).
ISSSD(v) is independent.

Proof. Immediate. U
Definition 1.21 (ISSSDs are specifications).
ISSSD(v) is a specification.

Lemma 1.22 (ISSSDs are proper specifications).
ISSSD(v) is a proper specification.
Proof.

We already know it’s a specification. Properness is immediate. O

Lemma 1.23 (Uniqueness of a Gibbs measure specified by an ISSSD).
There is at most one Gibbs measure specified by ISSSD(v).

Proof.
See book. O

Lemma 1.24 (Existence of a Gibbs measure specified by an ISSSD).
The product measure v° is a Gibbs measure specified by ISSSD(v).

Proof. Immediate. O

Definition 1.25 (Modifier).
A modifier of v is a family

p : Finset(S) — Q — [0, o0]
such that the corresponding family of kernels pvy is a specification.

Lemma 1.26 (Modifier of a modifier).
Modifying a specification v by p; then p, is the same as modifying it by their product.

Proof. TODO O

Lemma 1.27 (A modifier of a proper specification is proper).

If + is a specification and p a modifier of 7, then p7 is a proper specification.
Proof.

For all A € Finset(S), A€ &%, B€ Fg,, n: S — E, we want to prove

(pY)a(AN Bln) = 15(m)(p7)a(ABn)

Expanding out, this is equivalent to

/ pa(C) d(va(n)) =1B(n)/ pa(C) d(va(n))
(e ANB

CeA

which is true by Lemma 1.6 with f =14p,, g =15. O



Lemma 1.28 (Every specification is a modification of some ISSSD, Remark 1.28.5).
If F is countable, v is the counting measure and -y is any specification, then

pa(m) = va({ox = na}n)
is a modifier from ISSSD(v) to +.

Proof. For all A € Finset(S), A measurable, n: S — E, we have

(pISSSD(v) 5 (Al) = / pA(Q)ISSSD()(dC|) (1.10)
¢

- /< a({o = 1} ) ISSSD(v) (dC]n) (111)

= va(Aln) (1.12)

O

Proposition 1.29 (Characterisation of modifiers, Proposition 1.30.1).
If p is a family of measurable densities and ~y is a proper specification, then TFAE

1. p is a modifier of v
2. For all A{,A, with A; C A, and all : S — E, we have

Pr, =P, - (Va,Pa,)  Ya,([m)-ace.

Proof. o (=) pp, = pa, - (Va,Pn,)  Ta,([0)-ae.

- = PA A, T
O

Proposition 1.30 (Characterisation of modifiers of independent specifications, Proposition
1.30.2).

If p is a family of measurable densities and -y is a proper independent specification, then
TFAE

1. p is a modifier of ~

2. For all Ay, Ay with Ay C Ay, n: S — Eand v, s, (-|a)-almost all 1, : S — E, we have

PA2(<1>PA1 (G) = P, (Cz)PAl (¢1)
for v5, (+[m2) X ya, (+|n2)-almost all (¢, Cy).
Proof. O

Definition 1.31 (Premodifier, Definition 1.31). A family of measurable functions h, : (S —
E) — [0,00[ is a premodifier if

hA2 (C)h/\l (n) = hAl (C)’Mz (n)

for all Ay C Ay and all ¢,n: S — E such that (. = ny..



Lemma 1.32 (Modifiers are premodifiers). If p is a modifier of ISSSD (), then it is a premod-
ifier if any of the following conditions hold:

1. FE is countable and v is equivalent to the counting measure.

2. F is a second countable Borel space.

3. v is everywhere dense.

4. Forall Ay, CAyandalln: S = E, (— PA, (Q?Ag) is continuous on EM1.
Proof.

1. Use Proposition 77.
2. Omitted.
3. Omitted.
4. Omitted.

O

Lemma 1.33 (Premodifiers give rise to modifiers, Remark 1.32). If h is a premodifier and v is
such that 0 < vyh, < oo for all A, then

_ ha
A= 1SSSD(v) 1y

is a modifier of ISSSD(v).

Proof.
TODO =



Chapter 2

Gibbsian specifications

2.1 Potentials
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