Documentation

GibbsMeasure.Prereqs.LebesgueCondExp

noncomputable def MeasureTheory.lcondExp {α : Type u_1} (m : MeasurableSpace α) {m₀ : MeasurableSpace α} (μ : Measure α) [SigmaFinite μ] (f : αENNReal) :
αENNReal

Lebesgue conditional expectation of an ℝ≥0∞-valued function. It is defined as 0 if any of the following conditions holds:

  • m is not a sub-σ-algebra of m₀,
  • μ is not σ-finite with respect to m,
  • f is not μ-integrable.
Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Lebesgue conditional expectation of an ℝ≥0∞-valued function. It is defined as 0 if any of the following conditions holds:

    • m is not a sub-σ-algebra of m₀,
    • μ is not σ-finite with respect to m.
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem MeasureTheory.lcondExp_of_not_le {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f : αENNReal} (hm_not : ¬m m₀) :
      lcondExp m μ f = 0
      theorem MeasureTheory.lcondExp_of_not_sigmaFinite {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f : αENNReal} (hm : m m₀) (hμm_not : ¬SigmaFinite (μ.trim hm)) :
      lcondExp m μ f = 0
      theorem MeasureTheory.lcondExp_of_sigmaFinite {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f : αENNReal} (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] :
      lcondExp m μ f = if Measurable f then f else if hf : Measurable f then ENNReal.ofReal ⨆ (n : ), μ[ENNReal.toReal (.approx n)|m] else 0
      theorem MeasureTheory.lcondExp_of_measurable {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] {f : αENNReal} (hf : Measurable f) :
      lcondExp m μ f = f
      theorem MeasureTheory.lcondExp_const {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] (hm : m m₀) (c : ENNReal) [IsFiniteMeasure μ] :
      (lcondExp m μ fun (x : α) => c) = fun (x : α) => c
      @[simp]
      theorem MeasureTheory.lcondExp_zero {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] :
      lcondExp m μ 0 = 0
      theorem MeasureTheory.measurable_lcondExp {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f : αENNReal} :
      theorem MeasureTheory.lcondExp_congr_ae {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f g : αENNReal} (h : f =ᶠ[ae μ] g) :
      lcondExp m μ f =ᶠ[ae μ] lcondExp m μ g
      theorem MeasureTheory.lcondExp_of_aemeasurable {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] {f : αENNReal} (hf : AEMeasurable f μ) :
      lcondExp m μ f =ᶠ[ae μ] f
      theorem MeasureTheory.setLIntegral_lcondExp {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f : αENNReal} {s : Set α} (hm : m m₀) [SigmaFinite (μ.trim hm)] (hs : MeasurableSet s) :
      ∫⁻ (x : α) in s, lcondExp m μ f x μ = ∫⁻ (x : α) in s, f x μ

      The lintegral of the conditional expectation μ⁻[f|hm] over an m-measurable set is equal to the lintegral of f on that set.

      theorem MeasureTheory.lintegral_lcondExp {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f : αENNReal} (hm : m m₀) [hμm : SigmaFinite (μ.trim hm)] :
      ∫⁻ (x : α), lcondExp m μ f x μ = ∫⁻ (x : α), f x μ
      theorem MeasureTheory.lintegral_lcondExp_indicator {α : Type u_1} {m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {Y : αENNReal} (hY : Measurable Y) [SigmaFinite (μ.trim )] {A : Set α} (hA : MeasurableSet A) :
      ∫⁻ (x : α), lcondExp (MeasurableSpace.comap Y inferInstance) μ (A.indicator fun (x : α) => 1) x μ = μ A

      Total probability law using lcondExp as conditional probability.

      theorem MeasureTheory.ae_eq_lcondExp_of_forall_setLIntegral_eq {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] (hm : m m₀) [SigmaFinite (μ.trim hm)] {f g : αENNReal} (hg_eq : ∀ (s : Set α), MeasurableSet sμ s < ∫⁻ (x : α) in s, g x μ = ∫⁻ (x : α) in s, f x μ) (hgm : AEStronglyMeasurable g μ) :
      g =ᶠ[ae μ] lcondExp m μ f

      Uniqueness of the conditional expectation

      If a function is a.e. m-measurable, verifies an integrability condition and has same lintegral as f on all m-measurable sets, then it is a.e. equal to μ⁻[f|hm].

      theorem MeasureTheory.lcondExp_bot' {α : Type u_1} {m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] [ : NeZero μ] (f : αENNReal) :
      lcondExp μ f = fun (x : α) => (μ Set.univ).toNNReal⁻¹ ∫⁻ (x : α), f x μ
      theorem MeasureTheory.lcondExp_bot_ae_eq {α : Type u_1} {m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] (f : αENNReal) :
      lcondExp μ f =ᶠ[ae μ] fun (x : α) => (μ Set.univ).toNNReal⁻¹ ∫⁻ (x : α), f x μ
      theorem MeasureTheory.lcondExp_bot {α : Type u_1} {m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] [IsProbabilityMeasure μ] (f : αENNReal) :
      lcondExp μ f = fun (x : α) => ∫⁻ (x : α), f x μ
      theorem MeasureTheory.lcondExp_add {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f g : αENNReal} :
      lcondExp m μ (f + g) =ᶠ[ae μ] lcondExp m μ f + lcondExp m μ g
      theorem MeasureTheory.lcondExp_finset_sum {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {ι : Type u_2} {s : Finset ι} {f : ιαENNReal} :
      lcondExp m μ (∑ is, f i) =ᶠ[ae μ] is, lcondExp m μ (f i)
      theorem MeasureTheory.lcondExp_smul {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] (c : NNReal) (f : αENNReal) :
      lcondExp m μ (c f) =ᶠ[ae μ] c lcondExp m μ f
      theorem MeasureTheory.lcondExp_sub {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] {f g : αENNReal} :
      lcondExp m μ (f - g) =ᶠ[ae μ] lcondExp m μ f - lcondExp m μ g
      theorem MeasureTheory.lcondExp_lcondExp_of_le {α : Type u_1} {f : αENNReal} {m₁ m₂ m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] (hm₁₂ : m₁ m₂) (hm₂ : m₂ m₀) [SigmaFinite (μ.trim hm₂)] :
      lcondExp m₁ μ (lcondExp m₂ μ f) =ᶠ[ae μ] lcondExp m₁ μ f
      theorem MeasureTheory.lcondExp_mono {α : Type u_1} {m m₀ : MeasurableSpace α} {μ : Measure α} [SigmaFinite μ] (f g : αENNReal) :
      lcondExp m μ f ≤ᶠ[ae μ] lcondExp m μ g