Coercion #
Lean uses a somewhat elaborate system of typeclasses to drive the coercion system. Here a coercion means an invisible function that is automatically inserted to fix what would otherwise be a type error. For example, if we have:
def f (x : Nat) : Int := x
then this is clearly not type correct as is, because x has type Nat but
type Int is expected, and normally you will get an error message saying exactly that.
But before it shows that message, it will attempt to synthesize an instance of
CoeT Nat x Int, which will end up going through all the other typeclasses defined
below, to discover that there is an instance of Coe Nat Int defined.
This instance is defined as:
instance : Coe Nat Int := ⟨Int.ofNat⟩
so Lean will elaborate the original function f as if it said:
def f (x : Nat) : Int := Int.ofNat x
which is not a type error anymore.
You can also use the ↑ operator to explicitly indicate a coercion. Using ↑x
instead of x in the example will result in the same output.
Because there are many polymorphic functions in Lean, it is often ambiguous where the coercion can go. For example:
def f (x y : Nat) : Int := x + y
This could be either ↑x + ↑y where + is the addition on Int, or ↑(x + y)
where + is addition on Nat, or even x + y using a heterogeneous addition
with the type Nat → Nat → Int. You can use the ↑ operator to disambiguate
between these possibilities, but generally Lean will elaborate working from the
"outside in", meaning that it will first look at the expression _ + _ : Int
and assign the + to be the one for Int, and then need to insert coercions
for the subterms ↑x : Int and ↑y : Int, resulting in the ↑x + ↑y version.
Note that unlike most operators like +, ↑ is always eagerly unfolded at
parse time into its definition. So if we look at the definition of f from
before, we see no trace of the CoeT.coe function:
def f (x : Nat) : Int := x
#print f
-- def f : Nat → Int :=
-- fun (x : Nat) => Int.ofNat x
Important typeclasses #
Lean resolves a coercion by either inserting a CoeDep instance
or chaining CoeHead? CoeOut* Coe* CoeTail? instances.
(That is, zero or one CoeHead instances, an arbitrary number of CoeOut
instances, etc.)
The CoeHead? CoeOut* instances are chained from the "left" side.
So if Lean looks for a coercion from Nat to Int, it starts by trying coerce
Nat using CoeHead by looking for a CoeHead Nat ?α instance, and then
continuing with CoeOut. Similarly Coe* CoeTail? are chained from the "right".
These classes should be implemented for coercions:
Coe α βis the most basic class, and the usual one you will want to use when implementing a coercion for your own types. The variables in the typeαmust be a subset of the variables inβ(or out-params of type class parameters), becauseCoeis chained right-to-left.CoeOut α βis likeCoe α βbut chained left-to-right. Use this if the variables in the typeαare a superset of the variables inβ.CoeTail α βis likeCoe α β, but only applied once. Use this for coercions that would cause loops, like[Ring R] → CoeTail Nat R.CoeHead α βis similar toCoeOut α β, but only applied once. Use this for coercions that would cause loops, like[SetLike S α] → CoeHead S (Set α).CoeDep α (x : α) βallowsβto depend not only onαbut on the valuex : αitself. This is useful when the coercion function is dependent. An example of a dependent coercion is the instance forProp → Bool, because it only holds forDecidablepropositions. It is defined as:instance (p : Prop) [Decidable p] : CoeDep Prop p Bool := ...CoeFun α (γ : α → Sort v)is a coercion to a function.γ ashould be a (coercion-to-)function type, and this is triggered whenever an elementf : αappears in an application likef xwhich would not make sense sincefdoes not have a function type.CoeFuninstances apply toCoeOutas well.CoeSort α βis a coercion to a sort.βmust be a universe, and this is triggered whena : αappears in a place where a type is expected, like(x : a)ora → a.CoeSortinstances apply toCoeOutas well.
On top of these instances this file defines several auxiliary type classes:
Coe α β is the typeclass for coercions from α to β. It can be transitively
chained with other Coe instances, and coercion is automatically used when
x has type α but it is used in a context where β is expected.
You can use the ↑x operator to explicitly trigger coercion.
- coe : α → β
Coerces a value of type
αto typeβ. Accessible by the notation↑x, or by double type ascription((x : α) : β).
Instances
Equations
- instCoeOTCOfCoeOut = { coe := fun (a : α) => CoeOTC.coe (CoeOut.coe a) }
Equations
- instCoeOTC = { coe := fun (a : α) => a }
CoeHead α β is for coercions that are applied from left-to-right at most once
at beginning of the coercion chain.
- coe : α → β
Coerces a value of type
αto typeβ. Accessible by the notation↑x, or by double type ascription((x : α) : β).
Instances
Auxiliary class implementing CoeHead CoeOut* Coe*.
Users should generally not implement this directly.
- coe : α → β
Coerces a value of type
αto typeβ. Accessible by the notation↑x, or by double type ascription((x : α) : β).
Instances
Equations
- instCoeHTCOfCoeHeadOfCoeOTC = { coe := fun (a : α) => CoeOTC.coe (CoeHead.coe a) }
Equations
- instCoeHTCOfCoeOTC = { coe := fun (a : α) => CoeOTC.coe a }
Equations
- instCoeHTC = { coe := fun (a : α) => a }
CoeTail α β is for coercions that can only appear at the end of a
sequence of coercions. That is, α can be further coerced via Coe σ α and
CoeHead τ σ instances but β will only be the expected type of the expression.
- coe : α → β
Coerces a value of type
αto typeβ. Accessible by the notation↑x, or by double type ascription((x : α) : β).
Instances
Auxiliary class implementing CoeHead* Coe* CoeTail?.
Users should generally not implement this directly.
- coe : α → β
Coerces a value of type
αto typeβ. Accessible by the notation↑x, or by double type ascription((x : α) : β).
Instances
Equations
- instCoeHTCTOfCoeTailOfCoeHTC = { coe := fun (a : α) => CoeTail.coe (CoeHTC.coe a) }
Equations
- instCoeHTCTOfCoeHTC = { coe := fun (a : α) => CoeHTC.coe a }
Equations
- instCoeHTCT = { coe := fun (a : α) => a }
CoeDep α (x : α) β is a typeclass for dependent coercions, that is, the type β
can depend on x (or rather, the value of x is available to typeclass search
so an instance that relates β to x is allowed).
Dependent coercions do not participate in the transitive chaining process of regular coercions: they must exactly match the type mismatch on both sides.
- coe : β
The resulting value of type
β. The inputx : αis a parameter to the type class, so the value of typeβmay possibly depend on additional typeclasses onx.
Instances
CoeT is the core typeclass which is invoked by Lean to resolve a type error.
It can also be triggered explicitly with the notation ↑x or by double type
ascription ((x : α) : β).
A CoeT chain has the grammar CoeHead? CoeOut* Coe* CoeTail? | CoeDep.
- coe : β
The resulting value of type
β. The inputx : αis a parameter to the type class, so the value of typeβmay possibly depend on additional typeclasses onx.
Instances
Equations
- instCoeTOfCoeHTCT = { coe := CoeHTCT.coe a }
Equations
- instCoeTOfCoeDep = { coe := CoeDep.coe a }
CoeFun α (γ : α → Sort v) is a coercion to a function. γ a should be a
(coercion-to-)function type, and this is triggered whenever an element
f : α appears in an application like f x, which would not make sense since
f does not have a function type.
CoeFun instances apply to CoeOut as well.
- coe (f : α) : γ f
Coerces a value
f : αto typeγ f, which should be either be a function type or anotherCoeFuntype, in order to resolve a mistyped applicationf x.
Instances
Equations
- instCoeOutOfCoeFun = { coe := fun (a : α) => CoeFun.coe a }
Equations
- instCoeOutOfCoeSort = { coe := fun (a : α) => CoeSort.coe a }
↑x represents a coercion, which converts x of type α to type β, using
typeclasses to resolve a suitable conversion function. You can often leave the
↑ off entirely, since coercion is triggered implicitly whenever there is a
type error, but in ambiguous cases it can be useful to use ↑ to disambiguate
between e.g. ↑x + ↑y and ↑(x + y).
Equations
- coeNotation = Lean.ParserDescr.node `coeNotation 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "↑") (Lean.ParserDescr.cat `term 1024))
Instances For
⇑ t coerces t to a function.
Equations
- coeFunNotation = Lean.ParserDescr.node `coeFunNotation 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "⇑") (Lean.ParserDescr.cat `term 1024))
Instances For
↥ t coerces t to a type.
Equations
- coeSortNotation = Lean.ParserDescr.node `coeSortNotation 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "↥") (Lean.ParserDescr.cat `term 1024))
Instances For
Basic instances #
Coe bridge #
Helper definition used by the elaborator. It is not meant to be used directly by users.
This is used for coercions between monads, in the case where we want to apply a monad lift and a coercion on the result type at the same time.
Equations
- Lean.Internal.liftCoeM x = do let a ← liftM x pure (CoeT.coe a)
Instances For
Helper definition used by the elaborator. It is not meant to be used directly by users.
This is used for coercing the result type under a monad.
Equations
- Lean.Internal.coeM x = do let a ← x pure (CoeT.coe a)