Nonnegative elements are archimedean #
This file defines instances and prove some properties about the nonnegative elements
{x : α // 0 ≤ x} of an arbitrary type α.
This is used to derive algebraic structures on ℝ≥0 and ℚ≥0 automatically.
Main declarations #
{x : α // 0 ≤ x}is aFloorSemiringifαis.
instance
Nonneg.floorSemiring
{α : Type u_1}
[Semiring α]
[PartialOrder α]
[IsOrderedRing α]
[FloorSemiring α]
:
theorem
Nonneg.nat_floor_coe
{α : Type u_1}
[Semiring α]
[PartialOrder α]
[IsOrderedRing α]
[FloorSemiring α]
(a : { r : α // 0 ≤ r })
:
theorem
Nonneg.nat_ceil_coe
{α : Type u_1}
[Semiring α]
[PartialOrder α]
[IsOrderedRing α]
[FloorSemiring α]
(a : { r : α // 0 ≤ r })
: