Idempotent elements of a ring #
This file proves result about idempotent elements of a ring, like:
IsIdempotentElem.one_sub_iff
: In a (non-associative) ring,a
is an idempotent if and only if1 - a
is an idempotent.
theorem
IsIdempotentElem.one_sub
{R : Type u_1}
[NonAssocRing R]
{a : R}
(h : IsIdempotentElem a)
:
IsIdempotentElem (1 - a)
@[simp]
@[simp]
theorem
IsIdempotentElem.mul_one_sub_self
{R : Type u_1}
[NonAssocRing R]
{a : R}
(h : IsIdempotentElem a)
:
@[simp]
theorem
IsIdempotentElem.one_sub_mul_self
{R : Type u_1}
[NonAssocRing R]
{a : R}
(h : IsIdempotentElem a)
:
@[simp]
theorem
IsIdempotentElem.coe_compl
{R : Type u_1}
[NonAssocRing R]
(a : { a : R // IsIdempotentElem a })
:
@[simp]
theorem
IsIdempotentElem.compl_compl
{R : Type u_1}
[NonAssocRing R]
(a : { a : R // IsIdempotentElem a })
:
theorem
IsIdempotentElem.add_sub_mul_of_commute
{R : Type u_1}
[Ring R]
{a b : R}
(h : Commute a b)
(hp : IsIdempotentElem a)
(hq : IsIdempotentElem b)
:
IsIdempotentElem (a + b - a * b)
theorem
IsIdempotentElem.add_sub_mul
{R : Type u_1}
[CommRing R]
{a b : R}
(hp : IsIdempotentElem a)
(hq : IsIdempotentElem b)
:
IsIdempotentElem (a + b - a * b)
theorem
IsIdempotentElem.add
{R : Type u_1}
[NonUnitalNonAssocSemiring R]
{a b : R}
(ha : IsIdempotentElem a)
(hb : IsIdempotentElem b)
(hab : a * b + b * a = 0)
:
IsIdempotentElem (a + b)
a + b
is idempotent when a
and b
anti-commute.
theorem
IsIdempotentElem.mul_eq_zero_of_anticommute
{R : Type u_1}
{a b : R}
[NonUnitalSemiring R]
[IsAddTorsionFree R]
(ha : IsIdempotentElem a)
(hab : a * b + b * a = 0)
:
If idempotent a
and element b
anti-commute, then their product is zero.
theorem
IsIdempotentElem.commute_of_anticommute
{R : Type u_1}
{a b : R}
[NonUnitalSemiring R]
[IsAddTorsionFree R]
(ha : IsIdempotentElem a)
(hab : a * b + b * a = 0)
:
Commute a b
If idempotent a
and element b
anti-commute, then they commute.
So anti-commutativity implies commutativity when one of them is idempotent.