Erasing an element from a finite set #
Main declarations #
Finset.erase: For anya : α,erase s areturnsswith the elementaremoved.
Tags #
finite sets, finset
erase #
@[simp]
@[deprecated Finset.notMem_erase (since := "2025-05-23")]
Alias of Finset.notMem_erase.
theorem
Finset.eq_of_mem_of_notMem_erase
{α : Type u_1}
[DecidableEq α]
{s : Finset α}
{a b : α}
(hs : b ∈ s)
(hsa : b ∉ s.erase a)
:
An element of s that is not an element of erase s a must bea.
@[deprecated Finset.eq_of_mem_of_notMem_erase (since := "2025-05-23")]
theorem
Finset.eq_of_mem_of_not_mem_erase
{α : Type u_1}
[DecidableEq α]
{s : Finset α}
{a b : α}
(hs : b ∈ s)
(hsa : b ∉ s.erase a)
:
Alias of Finset.eq_of_mem_of_notMem_erase.
An element of s that is not an element of erase s a must bea.
@[simp]
theorem
Finset.erase_eq_of_notMem
{α : Type u_1}
[DecidableEq α]
{a : α}
{s : Finset α}
(h : a ∉ s)
:
@[deprecated Finset.erase_eq_of_notMem (since := "2025-05-23")]
theorem
Finset.erase_eq_of_not_mem
{α : Type u_1}
[DecidableEq α]
{a : α}
{s : Finset α}
(h : a ∉ s)
:
Alias of Finset.erase_eq_of_notMem.
@[simp]
theorem
Finset.erase_subset_erase
{α : Type u_1}
[DecidableEq α]
(a : α)
{s t : Finset α}
(h : s ⊆ t)
:
@[simp]