Miscellaneous #
This is currently not very sorted. PRs welcome!
A product space α × β is equivalent to the space Π i : Fin 2, γ i, where
γ = Fin.cons α (Fin.cons β finZeroElim). See also piFinTwoEquiv and
finTwoArrowEquiv.
Equations
- prodEquivPiFinTwo α β = (piFinTwoEquiv (Fin.cons α (Fin.cons β finZeroElim))).symm
Instances For
The space of functions Fin 2 → α is equivalent to α × α. See also piFinTwoEquiv and
prodEquivPiFinTwo.
Equations
Instances For
An equivalence that removes i and maps it to none.
This is a version of Fin.predAbove that produces Option (Fin n) instead of
mapping both i.castSucc and i.succ to i.
Equations
Instances For
The equiv version of Fin.predAbove_zero.
Fin.succAbove as an order isomorphism between Fin n and {x : Fin (n + 1) // x ≠ p}.
Equations
- finSuccAboveEquiv p = (Equiv.optionSubtype p) ⟨(finSuccEquiv' p).symm, ⋯⟩
Instances For
An embedding e : Fin (n+1) ↪ ι corresponds to an embedding f : Fin n ↪ ι (corresponding
the last n coordinates of e) together with a value not taken by f (corresponding to e 0).
Equations
- Equiv.embeddingFinSucc n ι = ((finSuccEquiv n).embeddingCongr (Equiv.refl ι)).trans (Function.Embedding.optionEmbeddingEquiv (Fin n) ι)
Instances For
Equivalence between Fin m ⊕ Fin n and Fin (m + n)
Equations
- finSumFinEquiv = { toFun := Sum.elim (Fin.castAdd n) (Fin.natAdd m), invFun := fun (i : Fin (m + n)) => Fin.addCases Sum.inl Sum.inr i, left_inv := ⋯, right_inv := ⋯ }
Instances For
The equivalence between Fin (m + n) and Fin (n + m) which rotates by n.
Equations
- finAddFlip = (finSumFinEquiv.symm.trans (Equiv.sumComm (Fin m) (Fin n))).trans finSumFinEquiv
Instances For
The equivalence induced by a ↦ (a / n, a % n) for nonzero n.
This is like finProdFinEquiv.symm but with m infinite.
See Nat.div_mod_unique for a similar propositional statement.
Equations
Instances For
The equivalence induced by a ↦ (a / n, a % n) for nonzero n.
See Int.ediv_emod_unique for a similar propositional statement.
Equations
Instances For
Promote a Fin n into a larger Fin m, as a subtype where the underlying
values are retained.
This is the Equiv version of Fin.castLE.
Equations
Instances For
Fin (n + 1) → α and (Fin n → α) × α are equivalent.
Equations
- Fin.succFunEquiv α n = (Fin.appendEquiv n 1).symm.trans (Equiv.prodCongrRight fun (x : Fin n → α) => Equiv.funUnique (Fin 1) α)